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Objective

• Find the optimal infrastructure investments allocations across 
regions

• Fit a quantitative trade model to data on the geographic 
distribution of economic activity, and find the impact of change 
in trade costs between specific locations

• Develop a framework for a Neoclassical Trade Model with 
labour mobility
• To study optimal transport networks in general equilibrium 

spatial models

• Apply the framework to European road networks to assess:
• Aggregate and regional impacts of optimal infrastructure 

growth
• Inefficiencies of observed networks, and 
• Optimal placement of roads as a function of observable 

regional characteristics.



Background

• Monge’s Optimal Transport Problem
• Optimal way to transport one distribution of mass to another 

(optimal assignment)

• Kantorovich’s Optimal Transport Problem
• Mathematical optimization problem to find the optimal way 

to transport mass from one location to another such that the 
total cost of transportation is minimized

• An optimal transport plan can be found by maximizing the 
dual problem, which involves finding a Lipschitz function 
that approximates the cost function

• Transport cost: primitive  
• Optimal Transport Plan: outcome

• Trade costs partly determine spatial distributions of prices, real 
incomes, and trade flows. What if Trade cost is an outcome and 
is used in counterfactuals to recommend welfare policies?



Related
Literature

• Trade models having counterfactuals w.r.t. Trade costs 
• Eaton & Kortum (2002): quantitative version of Ricardian trade model
• Anderson & van Wincoop (2003): quantitative Armington trade model

• Using counterfactuals w.r.t. shipping costs over least cost routes 
• Allen & Arkolakis (2014)- aggregate effect of the US highway system
• Donaldson & Hornbeck (2016)- historical impact of railroads on the 

US economy
• Alder (2019)- counterfactual transport networks in India
• Nagy (2016)- impact of development of US railroads on city formation

• Optimal Transport Methods in Economics, Alfred Galichon (2016)
• Optimal flow problem ~ Optimal route problem
• Mapping sources with fixed supply to sinks with fixed demand
• Transport costs as primitive (spatial price distribution, real income, 

trade flows)

• Commonality: Optimal transport problem
• Trader’s problem of choosing least cost routes across pairs of locations



Innovations 
in Approach

• Solve global optimization over a space of networks in neoclassical 
framework

• Trade cost as outcome, not primitive. Use counterfactuals w.r.t.
trade costs to analyse polices.

• Model applicable to any country
• Planners can use to analyse the transport infrastructure 

investments   
• Previous studies just analysed impact of trade costs on one 

economy

• Applicable for all cases of congestion
• Framework rather designed for strong cases of congestion
• No congestion is just a special case (e.g. gravity trade models)

• Locations are arranged on a graph and goods can only be shipped 
through connected locations subject to transport costs 
• how much is shipped (e.g., congestion or decreasing returns to 

shipping technologies) 
• how much is invested in infrastructure (e.g., number of lanes or 

quality of road). 



Model 
Framework

Assumptions:
qThe per-unit cost of shipping is increasing in the quantity 

of commodities shipped allowing for decreasing returns in 
the shipping sector, i.e., congestion. 
qThe more is shipped, the higher the per-unit shipping 

cost. 

qThe per-unit cost of shipping is decreasing with the 
increase in infrastructure. 

qThe multiplier of the conservation of flows constraint, Pn
reflects society’s valuation of a marginal unit of good n in 
location j, i.e. the price of good in the decentralized 
allocation.

qBuilding infrastructure requires a resource in fixed 
aggregate supply K, which can be freely shipped across 
locations and cannot be used for other purposes. Hence, the 
opportunity cost of building infrastructure in any location 
is only foregoing infrastructure elsewhere.



Model 
Framework

Definitions of terms:
Ø Utility of individual worker, u = U(c,h)
Ø Per-capita consumption of traded goods, 𝑐! = ⁄𝐶! 𝐿!
Ø Aggregate demand of traded goods in location j, 𝐶! =

𝐷! 𝐷!", … . , 𝐷!#

Ø Fixed supply 𝑉! = 𝑉!", … . , 𝑉!$ ; m = 1,…,M primary 
factors in location j

Ø Output of sector n in location j, 𝑌!% = 𝐹!% 𝐿!%, 𝑉!%, 𝑋!%
where 𝑉!% = 𝑉!"%, … . , 𝑉!$% and 𝑋!% = 𝑋!"%, … . , 𝑋!#%

Ø Locations J are arranged on an undirected graph (J , 𝜀), 
where 𝜀 denotes the set of edges (i.e., unordered pairs of J
). For each location j there is a set N(j) of connected 
locations, or neighbours. Goods can only be shipped 
through connected locations; i.e., goods shipped from j can 
be sent to any k ∈ N (j), but to reach any 𝑘& ∉ 𝑁(𝑗), they 
must transit through a sequence of connected locations.



Model 
Framework

Definition 1: The planner’s problem with immobile labour

𝑾 = 𝒎𝒂𝒙
𝒄𝒋,𝒉𝒋,{𝑰𝒋𝒌}𝒌∈𝑵(𝒋),{𝑫𝒋

𝒏,𝑳𝒋
𝒏,𝑽𝒋

𝒏,𝑿𝒋
𝒏,{𝑸𝒋𝒌

𝒏 }𝒌∈𝑵(𝒋)}𝒏
∑𝒋𝒘𝒋𝑳𝒋𝑼(𝒄𝒋, 𝒉𝒋 )

subject to:

(i) availability of traded commodities, 𝑐!𝐿! ≤ 𝐷! (𝐷!
", … . . , 𝐷!# ) for 

all j;

and availability of non-traded commodities, ℎ!𝐿! ≤ 𝐻! for all j;

(ii) the balanced-flows constraint, 

𝐷!"+#
"#

𝑋!""# +%
$∈&(!)

(1 + 𝜏!$(𝑄!$" , 𝐼!$))𝑄!$" ≤ 𝐹!" 𝐿!", 𝑉!", 𝑋!" + ∑)∈&(!)・𝑄)!"

for all  j, n

Consumption +  Intermediate use +  Exports      ≤ Production  +   Imports



Model 
Framework

(iii) the network-building constraint, ∑!.:
'∈#(!)

𝛿!'+ 𝐼!' ≤ 𝐾,

subject to a pre-existing network, 0 ≤ 𝐼_!' ≤ 𝐼!' ≤ ̅𝐼!' ≤∞ for all  
𝑗, 𝑘 ∈ 𝑁 𝑗 ;

(iv) local labour-market clearing, :
%
𝐿!% ≤ 𝐿! for all j;

and local factor market clearing for the remaining factors, :
%
𝑉!-% ≤

𝑉!- for all  j and m;

(v)  non-negativity constraints on consumption, flows, and factor use,

𝑐!, ℎ!, 𝐶!- ≥ 0 for all 𝑗 ∈ 𝑁 𝑗 and n

𝑄!'% ≥ 0 for all 𝑗, 𝑘 ∈ 𝑁 𝑗 and n

𝐿!%, 𝑉!-% ≥ 0 for all 𝑗,𝑚 and n



Model 
Framework

• Definition 2: The planner’s problem with fully
mobile labour:

𝑾 = 𝒎𝒂𝒙
𝒖,𝒄𝒋,𝒉𝒋,{𝑰𝒋𝒌}𝒌∈𝑵(𝒋),{𝑫𝒋

𝒏,𝑳𝒋
𝒏,𝑽𝒋

𝒏,𝑿𝒋
𝒏,{𝑸𝒋𝒌

𝒏 }𝒌∈𝑵(𝒋)}𝒏
𝒖

subject to restrictions (i)-(v) above; as well as:

(vi) free labour mobility, 𝐿5𝑢 ≤ 𝐿5𝑈(𝑐5 , ℎ5 ) for
all j;
(vii) aggregate labour-market clearing,
0

5
𝐿5 ≤ 𝐿.

• Case without labour mobility ~ International trade 
models
• Case with labour mobility ~ Urban economics 

model with a single homogenous tradable good



Model 
Framework

• The planner’s problem of Definition 1 can be expressed as
nesting three problem:

𝑾 = 𝒎𝒂𝒙
𝑰𝒋𝒌

𝒎𝒂𝒙
𝑸𝒋𝒌
𝒏 𝒎𝒂𝒙

{𝒄𝒋,𝒉𝒋,𝑫𝒋
𝒏,𝑳𝒋

𝒏,𝑽𝒋
𝒏,𝑿𝒋

𝒏}
∑𝒋𝒘𝒋𝑳𝒋𝑼(𝒄𝒋, 𝒉𝒋 )

subject to the constraints.
• Innermost maximization problem: standard allocation

problem of choosing consumption and factor use subject to
the production possibility frontier and the availability of
goods in each location

• Middle maximization problem: optimal flows subproblem
over 𝑄$%&

• Outermost maximization problem: network design
subproblem over 𝐼$%.

• For given domestic absorption 𝑫𝒋𝒏 and production 𝒀𝒋𝒏, the 
planner’s problem becomes standard optimal transport 
problem
• Well behaved problem, admit strong duality
• Finding Lagrange multipliers (price) for each location-good pairs



Model 
Framework

• Optimal flows in a 15x15 square network with uniform 
infrastructure across links.
• 1 good produced at origin and consumed in 10 

locations
• Price in each location indicated by z-axis

• Solution to optimal flow problem given 
production, consumption and population

• Density of flows represented by thickness 
of links and directions by arrows
• Finding least-cost route requires information

about flows, supply and demand for each good
• Optimal transport problem must be solved jointly 

with optimal allocation problem.



Model 
Framework

• No-arbitrage condition: The equilibrium price differential for commodity 
n between j and k is: 

$!
"

$#
" ≤ 1 + 𝜏%&' +

()#!
"

(*#!
" 𝑄%&' , if 𝑄%&' > 0 …..(1)

• Price differential between a location and its neighbours must be less than 
or equal to the marginal transport cost.

• The optimal flows follow the price gradient according to the above 
equation under equality. The consumption locations are local peaks of the 
price field as long as they do not re-ship the good.

• Optimal Network: As long as the upper bound is not binding, the planner’s 
choice for Ijk implies

𝑃+𝛿%&, ≥?
'

𝑃%'𝑄%&' (−
()#!

"

(*#!
" ), with equality if 𝐼%& > 𝐼_%& …..(2)

Marginal Building Cost ≥ Marginal Gain from Infrastructure

• Substituting the solution for 𝑄%&' as function of the price differentials into 
this equation gives the optimal infrastructure 𝐼%& between locations j and k 
as a function of prices only in each location.



Model 
Framework

Conditions for convexity of the planner’s problem:

1. (i) Given the network {𝐼!$}, the joint optimal transport and allocation problem in
the fixed (resp. mobile) labour case is a convex (resp. quasiconvex) optimization
problem if 𝑸𝝉𝒋𝒌 𝑄, 𝐼 is convex in Q for all j and k ∈ N (j); and

(ii) if in addition 𝑸𝝉𝒋𝒌 𝑄, 𝐼 is convex in both Q and I for all j and k ∈ N (j), then
the full planner’s problem including the network design problem from Definition 1
(resp. Definition 2) is a convex (resp. quasiconvex) optimization problem.

• In either the joint transport and allocation problem, or the full planner’s problem,
strong duality holds when labour is fixed.

Parametrization of transport costs:

Transport technology 𝝉𝒋𝒌 𝑸, 𝑰 = 𝜹𝒋𝒌𝝉
𝑸𝜷

𝑰𝜸 , with 𝛽 ≥ 0, 𝛾 ≥ 0 ….(3)
• 𝑸𝝉𝒋𝒌 𝑄, 𝐼 is convex in both arguments holds if and only if 𝛽 ≥ 𝛾. The elasticity of

per-unit transport costs to investment in infrastructure is smaller than its elasticity
with respect to shipments.

• Total flows from j to k as function of prices

𝑸𝒋𝒌𝒏 = 𝟏
𝟏(𝜷

𝑰𝒋𝒌
𝜸

𝜹𝒋𝒌
𝝉 𝒎𝒂𝒙

𝑷𝒌
𝒏

𝑷𝒋
𝒏 − 𝟏, 𝟎

𝟏/𝜷

….(4)

• Better infrastructure is associated with higher flows, given prices and geographic
trade frictions

• Total flows decreases with congestion and increases with average price differentials.
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Optimal infrastructure arising from unconstrained optimal-network
problem (𝐼_/0= 0, ̅𝐼/0 = ∞):

𝑰𝒋∗ =
𝜸
𝑷𝑲

𝜹𝒋𝒌
𝝉

𝜹𝒋𝒌𝑰
=
𝒏

. 𝑷𝒋𝒏 𝑸𝒋𝒌𝒏
.𝟏(𝜷

𝟏/(𝟏(𝜸)

= 𝜸

𝑷𝑲𝜹𝒋𝒌𝑰 𝜹𝒋𝒌𝝉
𝟏/𝜷

𝟏
𝟏 + 𝜷J

𝒏:𝑷𝒌
𝒏G𝑷𝒋𝒏

𝑷𝒋𝒏
𝑷𝒌𝒏
𝑷𝒋𝒏

− 𝟏
(𝟏H𝜷)/𝜷

𝜷/(𝜷I𝜸)

• Given the prices at origin, the optimal infrastructure increases with gross flows.
• Given gross flows, the optimal infrastructure increases with prices at origin.
• Optimal investment increases with 𝛿!$0 i.e. optimal investment offsets geographic trade

frictions.

• Optimal investment decreases with 𝛿!$1 i.e. less investment when infrastructure costlier
to build

2. Optimal Network in Log-linear case: When the transport technology is given by (3), the
full planner’s problem is a convex (resp. quasiconvex) optimization problem if 𝛽 ≥ 𝛾.∗
The optimal infrastructure is given by 𝐼/0= min[max(𝐼/0∗ , 𝐼_/0), ̅𝐼/0] implying that, in the
absence of a pre-existing network (𝐼_/0 = 0), then 𝐼/0 = 0⇔ 𝑃08 = 𝑃/8 for all n.



Model 
Framework

Non-Convexity: Increasing Returns to Transport 
• In the absence of a pre-existing network and transport technology given by 

(3) with 𝛽 ≥ 0, 𝛾 ≥ 0 and satisfies 𝛾 > 𝛽, non-convexity arise as the 
transport technology features economies of scale, and if there is a unique 
commodity produced in a single location, the optimal transport network is 
a tree. 

• In cases of multiple goods and multiple production locations with 𝛾 > 𝛽, 
the optimal network is sparser and concentrated on fewer links relative to 
cases with 𝛾 ≤ 𝛽.

Decentralized Competitive Equilibrium
• For a given network {𝑰𝒋𝒌 }, planner’s optimal allocation and optimal 

transport correspond to a decentralized competitive equilibrium of a 
standard neoclassical economy where consumers maximize utility, 
producers maximize profits and goods and factor markets clear. Only less 
standard feature is existence of a transport sector with congestion.

• The optimal route maximizes the per-unit profits: 

𝝅𝒐𝒅𝒏 = 𝒎𝒂𝒙
𝒓'()

𝒑𝒅𝒏 − 𝒑𝒐𝒏− .
𝒌'𝟎

𝝆-𝟏
𝒑𝒋𝒌𝒏 𝝉𝒋𝒌 𝒋𝒌0𝟏𝒏 − .

𝒌'𝟎

𝝆-𝟏
𝒑𝒋𝒌𝒏 𝒕𝒋𝒌 𝒋𝒌0𝟏𝒏

Selling price Sourcing cost Transport cost Taxes (tolls)



Model 
Framework

Decentralized 
Competitive 
Equilibrium

Definitions for 
Planner’s problem

- Without labour 
mobility

- With labour 
mobility



Model 
Framework

Welfare Theorems:
• If the tax on shipments of product n from j to k is 𝒕𝒋𝒌𝒏 = 𝜺𝑸,𝒋𝒌𝒏𝝉 𝝉𝒋𝒌𝒏 where

𝜀*,%&') =
(123)#!

"

(123*#!
" then,

(i) if labour is immobile, the competitive allocation coincides with the
planner’s problem under specific planner’s weights 𝑤%. Conversely, the
planner’s allocation can be implemented by a market allocation with
specific transfers 𝑡%; and

(ii) if labour is mobile, the competitive allocation coincides with the planner’s
problem if and only if all workers own an equal share of fixed factors and
tax revenue regardless of their location, i.e., 𝒕𝒋 =

𝜫
𝑳
.

• In either case, the price of good n in location j, 𝑝%' equals the multiplier on
the balanced-flows constraint in the planner’s allocation, 𝑃%'.

• Optimal allocation can be equivalently implemented by per-unit toll
𝜽𝒋𝒌𝒏 = 𝒑𝒋𝒌𝒏 𝜺𝑸,𝒋𝒌𝒏𝝉 𝝉𝒋𝒌𝒏

• If the global convexity condition 1 is satisfied and the toll 𝜃%&' is consistent
with the optimal Pigouvian tax ( 𝜃%&' = 𝑃%'𝜀*,%&') 𝜏%&' ), then the
decentralized infrastructure choice implements the optimal network
investment.



Model 
Framework

Extension of model framework to cases where 
congestion occurs across goods
• Per-unit cost 𝝉𝒋𝒌𝒏 is denominated in units of the bundle of traded goods 

aggregated through 𝑫𝒋 (·) rather that in units of the good itself. Assuming 
that transporting each unit of good n from j to k ∈ N(n) requires 𝝉𝒋𝒌𝒏 = 
𝒎.
𝒏𝝉𝒋𝒌(𝑸𝒋𝒌. 𝑰𝒋𝒌. ) units of the traded goods bundle, Number of units of the 

traded goods bundle 𝑫𝒋 used to transport goods from j to its neighbours is 
𝑻𝒋. =+

𝒌∈𝑵(𝒋)
𝝉𝒋𝒌. (𝑸𝒋𝒌. 𝑰𝒋𝒌. )𝑸𝒋𝒌.

• After properly adjusting the resource constraints in the definition of the 
planner’s problem, the convexity of the full planner’s problem is preserved 
under the same conditions stated in Definition 1 of convexity.

Extension of model framework to cases of Inefficient 
Market Allocation
• Several externalities lead to inefficient market allocation

• Production technology is 𝒀𝒋𝒏 = 𝑭𝒋𝒏( 𝑳𝒋𝒏, 𝑽𝒋𝒏, 𝑿𝒋𝒏; 𝑳𝒋. ) where the 
spillovers from the total number of workers 𝑳𝒋. on output 𝒀𝒋𝒏 is not 
internalized in the market allocation.

• Consumption of amenities entering through utility, U(𝒄𝒋. 𝒉𝒋. ; 𝑳𝒋. )
• Pigouvian taxes 𝒕𝒋𝒌𝒏 doesn’t correct the congestion externality in 

shipping
• The general convexity of the problem corresponding to part (ii) of 

Definition 1 can’t be established



Model 
Algorithm

Convex Cases (Definition 1)
• The full planner’s problem is a convex optimization 

problem 
• KKT conditions are necessary and sufficient 
• 1st order conditions is a system of non-linear equations 

with many unknowns
• Gradient-descent based algorithms used to make 

optimization problem tractable
• Feed the numerical solver with the primal problem 

𝒔𝒖𝒑
𝒙
𝒊𝒏𝒇
𝝀L𝟎

𝓛 𝒙, 𝝀

• Solve the dual problem by inverting the order of 
optimization 
𝒊𝒏𝒇
𝝀L𝟎

𝒔𝒖𝒑
𝒙

𝓛 𝒙, 𝝀 = 𝒊𝒏𝒇
𝝀L𝟎

𝒔𝒖𝒑
𝒙

𝓛 𝒙(𝝀), 𝝀

• Convexity of problem ensures that the dual coincides 
with the primal i.e. strong duality holds
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Non-Convex Cases
• Combine the primal and dual approaches to solve for the joint neoclassical 

allocation and optimal transport problems with an iterative procedure over 
the infrastructure investments

1. For i :=1, guess some initial level of infrastructure 𝐼&'
( that satisfies the network building 

constraint.
2. Given the network 𝐼&'

( , solve for {𝑐& , 𝐷)* , 𝑄&'* , 𝐿&*} using a duality approach.

3. Given the flows {𝑄&'* } and prices 𝑃&* , make a new guess 𝑰𝒋𝒌
𝒊,𝟏 = 

𝜸 𝜹𝒋𝒌
𝝉

𝑷𝑲𝜹𝒋𝒌
𝑰 (𝑷𝒋𝑫𝑸𝒋𝒌

𝟏:𝜷)
𝟏

𝟏4𝜸
for x=1 and 𝑰𝒋𝒌

𝒊$𝟏 =
𝜸 𝜹𝒋𝒌

𝝉

𝑷𝑲𝜹𝒋𝒌
𝑰 (9

𝒏
𝑷𝒋𝒏 𝑸𝒋𝒌𝒏

𝟏$𝜷
)

𝟏
𝟏'𝜸 for x=0. and set 

𝑃. s.t. ∑𝛿/0; 𝐼/0
<(= = 𝐾

4. If >
𝒊
𝑰𝒋𝒌
𝒊,𝟏 − 𝑰𝒋𝒌

𝒊 ≤ 𝜺, then potential candidate for a local optimum achieved, likely to 
be a local extremum. If not, set I := i+1 and go back to 2. 

• Use Simulated Annealing to guarantee convergence to a global maximum.
1. For i :=1, set the initial network {𝐼&'

( } to a local optimum as achieved, and compute its 
welfare 𝑣((). Set the initial temperature 𝑇 of the system to some number. 

2. Draw a new candidate network { [𝐼/0} by perturbing 𝐼&'
1 . Compute the corresponding 

optimal allocation and transport {𝑐& , 𝐷)* , 𝑄&'* , 𝐿&*}. Compute associated welfare D𝑣.

3. Accept the new network i.e. set 𝐼&'
1,( = ]𝑣 and 𝑣1,( = D𝑣 with probability min[exp(( D𝑣 -

𝑣()/𝑇), 1], if not keep the same network 𝐼&'
1,( = 𝐼&'

1 and  𝑣1,( = 𝑣1

4. Stop when 𝑇 < 𝑇21* . Otherwise set i := i+1 and 𝑇 ≔ 𝜌3𝑇 and return to 2.



Illustrative 
Examples .

• The size of the circles represent the 
productivity of each location

• Productivity at center assumed 10 
times that at any other location.

• Each circle represents a location.
• Links represent the underlying 

network upon which the transport 
network may be built.

• Population and housing are uniform 
across space, normalized to 1. 



Illustrative 
Examples

Optimal Transport Network for K=1

Optimal Transport Network for K=100



Illustrative 
Examples

Optimal 
Transport 
Network 
with 
Randomly 
located cities



Illustrative 
Examples

Optimal 
Transport 
Network with 
10+1 Goods

Convex Case with Labour mobility

Non-Convex Case with Labour mobility



Illustrative 
Examples

Optimal Transport Network under 
Alternative Building Costs

• Thickness and colour of the segments reflects the level of 
infrastructure built on a given link. 

• Thicker and darker colours represent more infrastructure and 
quantities. 

• Circles represent the 20 cities randomly allocated across spaces. 
The larger red circle represents the city with the highest 
productivity. 

• Different panels vary in the parametrization of the cost of 
building infrastructure. 

• Panel (a): Euclidean distance
• Panel (b): A mountain added 
• Panel (c): A river with a natural land crossing added
• Panel (d): No land crossing. Bridge construction over river added 

with increasing returns to network building
• Panel (e): Bridge construction over river added 



Application 
of 
Framework 
to European 
Road 
Networks

Assumptions:
• Individual utility over traded/non-traded goods to be Cobb-Douglas  

U = 𝒄𝜶𝒉𝟏5𝜶

• Aggregator of traded goods to be CES with 𝐶) = 7
*+,

-
𝑪𝒋𝒏

(01,)/0
0/(01,)

• Labour is the only factor of production
• Production technologies to be linear
• 𝝈 = 5, 𝜶 = 0.4
• Congestion parameter and the returns to infrastructure parameter 

should be set to elasticities of total trade costs with respect to trade 
flows and infrastructure. Since such elasticities are not readily 
available, we use the impact of shipping time on trade costs

• Shipping speed is a loglinear function of the number of vehicles and 
road lane kilometres; 

• Number of vehicles is a linear function of the quantity shipped. 
• Under these assumptions, we can calibrate 𝜷 and 𝜸 to match 

empirical relationship between speed, roads and vehicles 
estimated. Their estimates imply 𝜷 = 0.13 and 𝜸 = 0.10 
suggesting decreasing returns to scale. 

• We use these parameters as benchmark, and also implement the 
analysis in a case with increasing returns. Specifically, 
considering a higher value of 𝜸 such that the ratio between 𝜷
and 𝜸 is the mirroring case (𝜷=0.13 and 𝜸 = 0.169)
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Application of 
Framework to 
European Road 
Networks

Counterfactuals simulation
1. Optimal expansion: Compute the aggregate gains from 

an optimal expansion 50% of the observed road network 
(total resources K) within each country constraining the 
planner to build on top of the existing network, 
𝐼_%& = 𝐼%&KLM.
• More policy relevant

2. Optimal reallocation: Compute the losses due to 
misallocation  of current roads within each country 
without constraining the planner to build on top of the 
existing network,𝐼%&KLMs. t. 𝐼_%&=0.

• All counterfactuals use the geographic measure of 
building costs, 𝜹𝑰,𝑮𝑬𝑶, and the benchmark 
parametrization of 𝜷 and 𝜸.  

• Width and brightness of each link is proportional to the 
difference between the optimal counterfactual network 
and the observed network, 𝐼%&∗ − 𝐼%&KLM for each link jk ∈ E. 

• Comparison between (c)-(d) and (e)-(f) reveals labour 
mobility does not fundamentally affect the optimal 
infrastructure investments.



Conclusions

• Optimal road investments are directed to locations with initially 
lower levels of infrastructure, reflecting decreasing returns to 
infrastructure at the link level.
• Under GEO-based measure of building costs, the investments are also more 

intensely directed to locations with initially higher levels of population and 
income per worker. 

• Under FOC-based measure of building costs, the observed allocation of roads is 
efficient and therefore the welfare impact of infrastructure is equalized across 
links regardless of the fundamentals reflected in income and population. 

• Since the model implies a complex mapping from the fundamentals 
to the investments, these observable outcomes guide only a fraction 
of the optimal investment decisions (𝑅1 ~20-30%).

• There is lack of significant correlation between infrastructure 
growth and population growth, which implies that when the optimal 
investment plan is implemented, growth in a location depends on 
investments in other locations in potentially complex ways. If we 
randomly improve individual links, population growth does appear 
correlated with infrastructure growth.

• Impact of initial income on population growth in the optimal 
investment plan operates through the level of consumption 
reflecting that the goal of the optimal investments is to reduce 
variation in the marginal utility of consumption of traded 
commodities across locations.

• The optimal investment in infrastructure reduces spatial 
inequalities, although different assumptions on building costs imply 
different ways of achieving this goal by changing the optimal 
placement of infrastructure.



Conclusions

• A general framework developed to study optimal 
transport networks in spatial equilibrium. 
• Provides conditions such that the full planner’s 

problem, involving the optimal flow of goods as 
well as the general-equilibrium and network-
design problems, is globally convex and 
numerically tractable
• Gains from road expansion and real 

consumption losses from misallocation. 
Suggests a way for policy planners to evaluate 
the welfare utilities for policy formulations.
• Role of regional characteristics such as 

institutional quality in infrastructure investment



Limitations

• Assumes that the economy is in a state of 
general equilibrium which may not be realistic 
in all cases. 

• No conclusive relations between populations and 
infrastructure growth due to over-generalised 
model framework.

• Model framework developed for only 10 
commodities in trade within an economy. 
Increase in number of commodities make the 
model highly difficult to solve because of 
heuristic approach of simulated annealing.

• No account of the impact of factors, e.g. climate 
change, on transportation policy



Future 
Research

• Trade model development for developing economies 
in a neoclassical framework

• Effect of a global planner in economies 
having strong agglomeration. 

• Better parametrization to find a conclusive relation 
between population and infrastructure growth. 

• Construct instruments for policy planners for 
investments in transport infrastructure as function of 
observable regional characteristics.

• Study political economy issues associated with 
infrastructure, such as spatial competition among 
planning authorities.



Thank you 
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listening !!!


