

M

11th Aug. 2015 the 5th International BinN research seminar

> M2 NODOKA Kasahara The University of Tokyo kasahara@bin.t.u-Tokyo.ac.jp

Index

2

- Research background
- Introduction of one-way car sharing service in Yokohama
- Data analysis
- Numerical example : Paradox of station distribution
- Calculation of profit maximization method in simple network
- Micro simulation in real network
- Conclusion

Background

- 3
- Car sharing service was introduced to Japan as new convenient mobility in recent years .

http://business.nikkeibp.co.jp/article/topics/20140728/269323/?P=3&mds

- One-way car sharing : does not require its users to return the vehicle to the same location from which it was accessed.
- In 2014, the one-way car sharing was approved by law.
 →"in the case that we can access the situation of car by utilizing the IT"

Background

Round trip Car Sharing One-way Car Sharing IT information IT information center center

The development of IT technology enable to on-demand transportation system

Car sharing service in Yokohama city

Data property

Probe person data

- activity diary for each monitor and trajectory data by GPS
- to describe the learning effect by long-term data
- to grasp the dot base trajectory

survey	Survey period	Number of Monitor	Count of trip	Number of GPS data
Choimobi PP2013	2013/10/01 ~2014/03/31	118	19944	21553929
Choimobi PP2014	2014/09/01 ~2014/09/30	16	1025	1180192
Choimobi PP2014	2014/10/01~2014/10/31	15	902	1038377
Total	8 month	123	21,862	

Use result data

- Record of use
- OD, time, the number of vehicle at each station

Survey period	Number of station	Count of use	Number of user
2013/10/11~2014/09/24	54	45190	5910
2014/11/1~2015/6/30	60	17666	Over 10000

What is problem?

Uneven distribution of vehicle cause the risk of unavailable service

• Imbalance between demand and supply cause the loss of opportunity cost frequently happens on the operation side when there is no reservation available for users during their required hours.

What is problem?

Research Question

How we can reduce this imbalance and then minimize the loss of opportunity cost

Numerical example : Paradox of station distribution

Probability of trip demand

$$P\left(d_{ij}(t)\right) = \frac{\left(\lambda_{ij}(t)\right)^{d_{ij}(t)} \exp(-\lambda_{ij}(t))}{\left(d_{ij}(t)\right)!}$$

Expectation value parameter of Poisson distribution

$$\lambda_{ij}(t) = \overline{\lambda_{ij}}(t) \cdot \frac{\exp(\alpha_{ij} + \beta p_{ij}(t))}{A_{ij} + \exp(\alpha_{ij} + \beta p_{ij}(t))}$$

 d_{ij} : demand of trip between station *i* and *j* $\overline{\lambda_{ij}}(t)$: all trip between station *i* and *j* p_{ij} : price (controlled variable) $A_{ij}, \alpha_{ij}, \beta_{ij}$: parameter (constant)

Method of demand control

- 1. Reduce the number of station
 - Easy to manage
 - ✓ Decrease the advantage of one-way car sharing service that allow us to move short distance.
- 2. Relocation by operator
 - Surely get lid of the uneven vehicle distribution
 - ✓ Large operation cost
- 3. Demand incentive control by changing price
 - Trip to the high demand station : higher price
 Trip to the low demand station : lower price

✓ Demand changes by stochastic

Objective

To Formulate of the stochastic control system by the pricing strategy and propose the algorithm.

Formulation of profit maximization

• Maximize the profit by user's use of Car sharing service

$$\max R(s(t), O(T)) = \sum_{t} r(t|s(t), o(t))$$

$$= \sum_{t} r(t|s(t), o(t))$$

$$= \sum_{t} \sum_{i,j} V_{ij}(t|s(t), o(t)) p_{ij}(t|o(t))$$
The number of trip between station *i* and *j*
The price between station
$$N = \{1, ..., i, j, ..., N\}$$
Set of station
$$M_{ij}(t)$$
Trip demand at time *t*

$$T = \{1, ..., t, ..., T\}$$
Set of time
$$v_{ij}(t)$$
The number of real trip at time *t*

$$r_{i}(t)$$
The number of vehicle at time *t*

$$p_{ij}(t) \in o(t)$$
Price between *i* and *j* at time *t*

$$Price between i and j at time t
$$Price between i and j
$$Price between j$$

12

Formulation of profit maximization

s.t.

 $\sum_{i} x_i = X$

Law of the conservation of the number of vehicle

$$x_{i} - \sum_{j} v_{ij}(t) + \sum_{k} v_{ki}(t) \ge 0$$
 Constrain of departure
$$x_{i} - \sum_{j} v_{ij}(t) + \sum_{k} v_{ki}(t) \ge c_{i}$$
 Constrain of arrival
$$x_{i}(t+1) = x_{i} - \sum_{k} v_{ij}(t) + \sum_{k} v_{ki}(t)$$
 The movement of vehic

$$x_i(t+1) = x_i - \sum_j v_{ij}(t) + \sum_k v_{ki}(t)$$
 The movement of vehicle

 $N=\{1,\ldots,i,j,\ldots,N\}$ $d_{ij}(t)$ Set of station

 $T = \{1, \dots, t, \dots, T\}$ Set of time

Max of parking space C_i

 $x_i(t)$ The number of vehicle at time t

 $s(t) = \{x_1(t), ..., x_N(t)\}$ Distribution of vehicle at time t

- Trip demand at time *t*
- $v_{ij}(t)$ The number of real trip at time t
- o(t)demand control at time t

$$p_{ij}(t) \in o(t)$$

Price between i and j at time t

Algorithm by using dynamic programming method **14**

Dynamic programming method

Calculate an optimum control by considering a state transition of next period =Finite Markov Decision Process(Bellmann, 1957; Howard, 1960)

optimality function

$$u_{t}(s(t)) = \begin{cases} \max_{o(t)} \left\{ r(t|s(t)), o(t) + \sum_{s(t+1)} P(s(t+1)|s(t), o(t)) \cdot u_{t+1}(s(t+1)) \right\} \\ max\{r(T|s(T), o(T)\} \\ o(T) \end{cases} \quad (t = T) \end{cases}$$

 \rightarrow calculation is start from last period T towards beforehand

 $\begin{cases} \text{Step1: calculate } u_T(s(T)) \text{ for state } s(T) \\ \text{Step2: calculate } u_{T-1}(s(T-1)) \text{ for state } s(T-1) \\ \text{Step3: repeat towards the former period} \end{cases}$

Numerical example : Verify the price control effect

Calculate double or half price for each OD

 r(t) is stochastic function
 ⇒result of calculation are variable Solution algorithm

- Maximize the expected value type
 - ⇒profit might decrease extreme

Micro simulation

Mode choice model by using PP data

17

Probe Person data : activity diary for each monitor and trajectory data by GPS

survey	Survey period	Number of Monitor	Count of trip	Number of registrant
Choimibi PP2013	2013/10/01 ~2014/3/31	118	19944	21553929
Choimobi PP2014	2014/9/1-2014/10/31	16	1927	2218469

Use result data

Survey period	Number of station	Count of use	Number of user
2013/10/11~2014/09/24	54	45190	5910

Mode choice model by using MNL

$$P_{cs} = \frac{\delta_{cs} \exp(V_{cs})}{\sum_{m} \delta_{m} \exp(V_{m})}$$

cs : car sharing

 P_{cs} : probability of car sharing V_m : constant term of mode m δ_m : availability of mode m

Considering availability of CS

variables	parameter	t-value
specific constants(public transportation)	1.010	7.23**
Time [*10min]	-0.203	-2.06*
Cost [*100 yen]	-0.239	-8.52**
Access/egress time [min]	-0.028	-5.43**
Under 1km(walk)	-1.240	-9.56**
number of sample		688
LL(0)		-1232.731
LL(β)		-716.47
ρρ2		0.40

Application to the real network

Scenario	Station interval	Pricing control
A	500m	Without
В	500m	With
С	100m	Without
D	100m	with

Pricing rule

- (a) Set half price(10yen/min) when vehicle ahead to the empty station or depart from full station
- (b) Set double price(40yen/min)when vehicle make origin stationfull or depart station empty

Distribution of station (left : 500m interval, right : 100m interval)

Result of simulation

Result of Simulation

Simulation Scenario

Scenario	Profit (yen)	Count of user	Station interval	Pricing control
А	347,260	1,709	500m	Without
В	401,390	1,862	500m	With
С	272,580	2,279	100m	Without
D	303,900	2,391	100m	with

■ empty ■ normal ■ full

 empty normal full В

time

Conclusion

Summary

 Propose the algorithm and formulation regarding to the stochastic control with pricing strategy deal with loss of opportunity caused by uneven station distribution.

 \rightarrow enable to control considering the stochastic transition of system

Evaluate the pricing strategy in the Yokohama network by constructing the micro simulation based on the Use result data.
 →enable to consider availability of CS

Future works

- Elaboration and sophistication of Micro simulation and activity model
- Verify the profit maximization in the real network.
- Examine the scenario for simulation And so on

Reference

- Nissan, choimobi
- http://www.nissan-global.com/EN/NEWS/2013/_STORY/131010-02-e.html
- Pigou, A. C., The Economics of Welfare., MacMillan, London, 1920.
- Knight, F., Some Fallacies in the Interpretation of Social Costs, Quarterly Journal of Economics, Vol.38, pp.582–606, 1924.
- Downs, A., The Law of Peak-Hour Expressway Cngestion, Traffic Quarterly, Vol.16, pp.393-409.
- Thomson, J., M., Great Cities and their Traffic, Gollancz, London.
- Braess D., Nagurney A., and Wakolbinger T.: On a Paradox of Traffic Planning, Transportation Science, Vol.39, No.4, pp.446-450, 2005.
- Bellmann, R., Dynamic Programming, Princeton Univ. Press, New Jersey, 1957.
- Howard, A., Dynamic Programming and Markov Processes, The MIT Press, Cambridge, Massachusetts, 1960.
- Ciari, F., Dobler, C., and Axhausen, K., Modeling one-way shared vehicle systems: an agent-based approach, paper presented at 13th International Conference on Travel Behaviour Research, Toronto, July 2012.
- Barth, M. and Todd, M., Simulation model performance analysis of a multiple shared vehicle system, Transportation Research Part C, Vol.7(4), pp.237-259, 1999.
- Kek, A.G., R.L.Cheu and M.L.Chor (2006). Relocation simulation model for multiple-station shared-use vehicle systems, Transportation Research Record: Journal of the Transportation Research Board, pp.81-88
- Nair, R., Miller-Hooks, E., Fleet Management for Vehicle Sharing Operations, Transportation Science, Vol.45, pp.524-540, 2011.
- Lin, J.-R., and Yang, T.-H., Strategic design of public sharing systems with service level constraints, Transportation Research Part E, Vol.47, pp.284-294, 2011.

Appendix

チョイモビのサービスの整理

	第一期	第二期
運用期間	2013/10/11~2014/11/1	2014/11/1~2015/9末
会員登録	2014/9/30で終了	20014/10/28
安全講習会	201/10/9	2014/10/4
車両	70台	50台
ステーショ ン	63か所(131台分)	約60か所(約110台分)

料金設定	第一期	第二期
会員登録料	無料	1000円
10月	20 円/分(21 日まで)	-
11月		
12月以降	A プランまたは B プラン	A プランまたは B プラン

料金設定	Aプラン	Bプラン
月額会費	1,000 円	-
無料利用	50 分	-
料金/分	20 円(51 分 以降)	30 円