Structural estimation for a route choice model with uncertain measurement

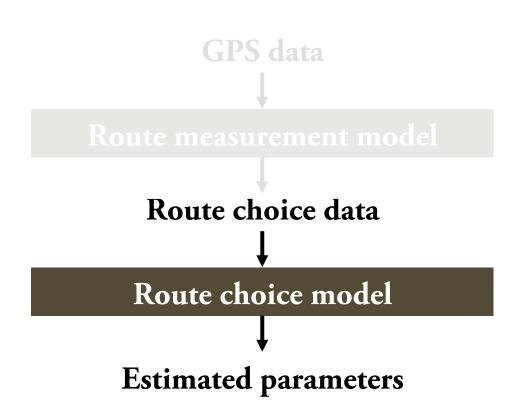
Yuki Oyama* & Eiji Hato

*PhD student Behavior in Networks studies unit Department of Urban Engineering School of Engineering, The University of Tokyo

September 25, 2016

Outline

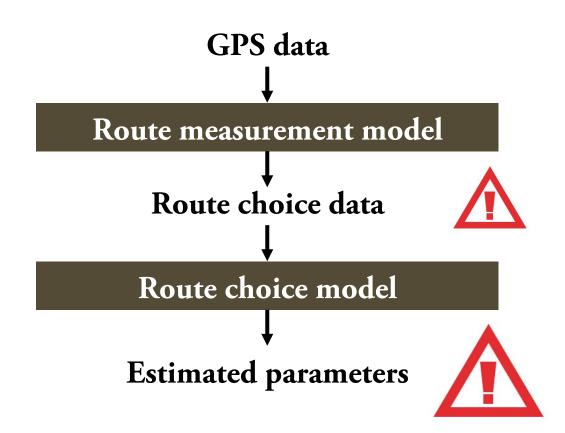
- 1. Introduction
- 2. Link-based route measurement model
- 3. Structural estimation method
- 4. Numerical examples
- 5. Conclusions


Outline

1. Introduction

- 2. Link-based route measurement model
- 3. Structural estimation method
- 4. Numerical examples
- 5. Conclusions

Route choice analysis


Parameter estimation results largely depend on accuracy of route measurement

Motivation Introduction

Route choice analysis

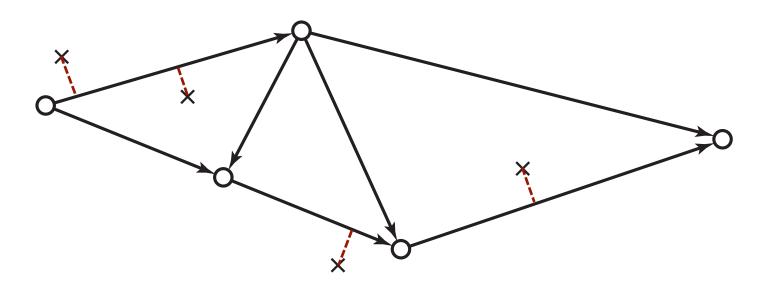
Parameter estimation results largely depend on accuracy of route measurement

Motivation

Pedestrian route choice analysis

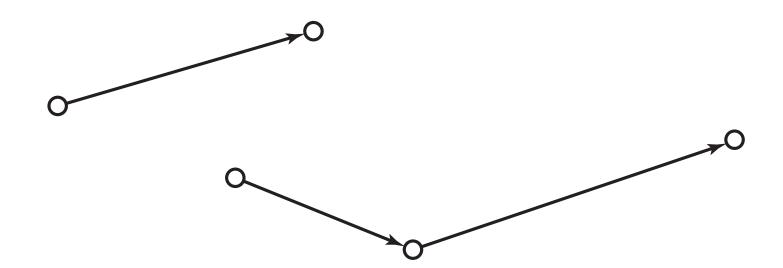
Measurement uncertainty; Dense and high-resolution network

- Dense network
- Spatial dependence of **Measurement errors**
 - Along river
 - Wide street
 - Narrow street
 - With arcade



Route measurement models (1)

Sequential approach infers the **true location at each data** in chorological order

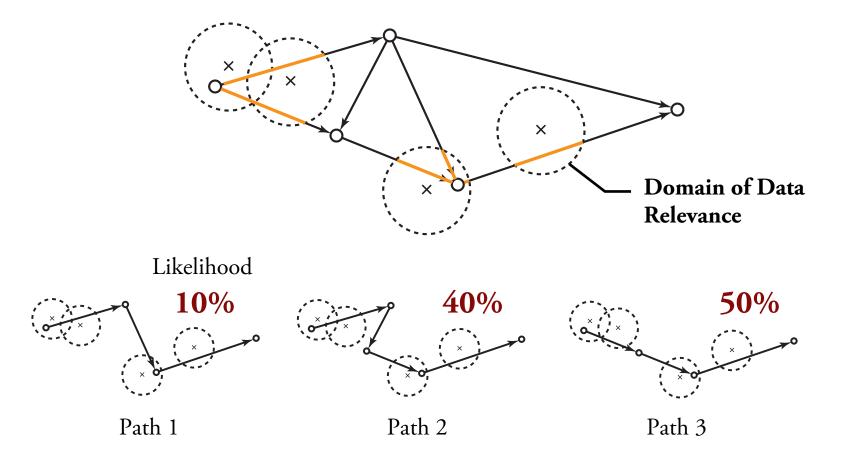


^{× :} GPS data

Literature review

Route measurement models (1)

Sequential approach can output meaningless paths

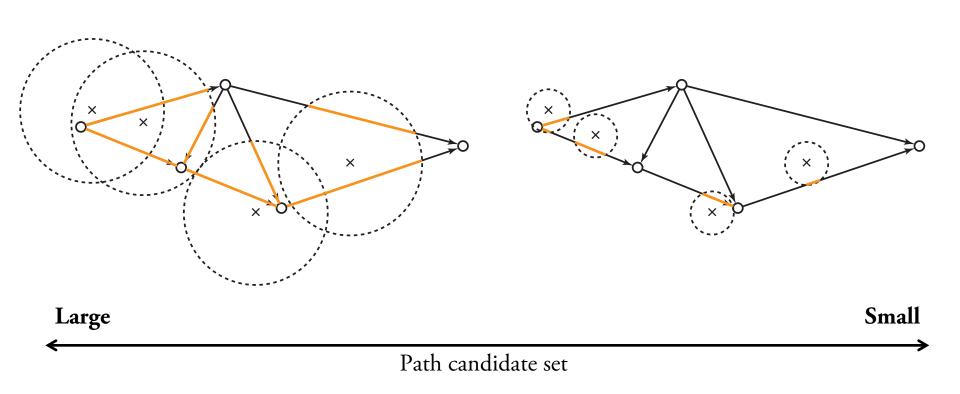


Route measurement models (2)

Path-based probabilistic approach evaluates path likelihood regarding all GPS data

included in a trip

Pyo et al. (2001); Bierlaire et al. (2013)

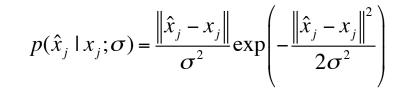


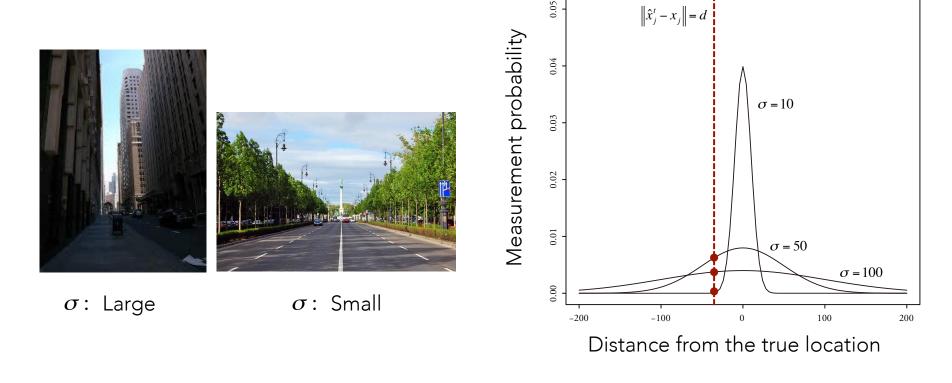
Route measurement models (2)

Path-based probabilistic approach suffers with **trade-off** between computational

efficiency and measurement accuracy

Pyo et al. (2001); Bierlaire et al. (2013)

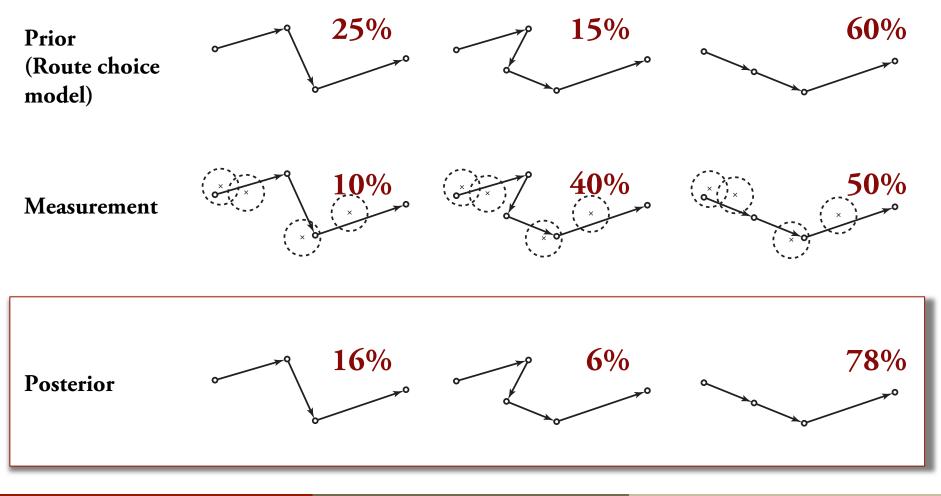



Literature review Introductio

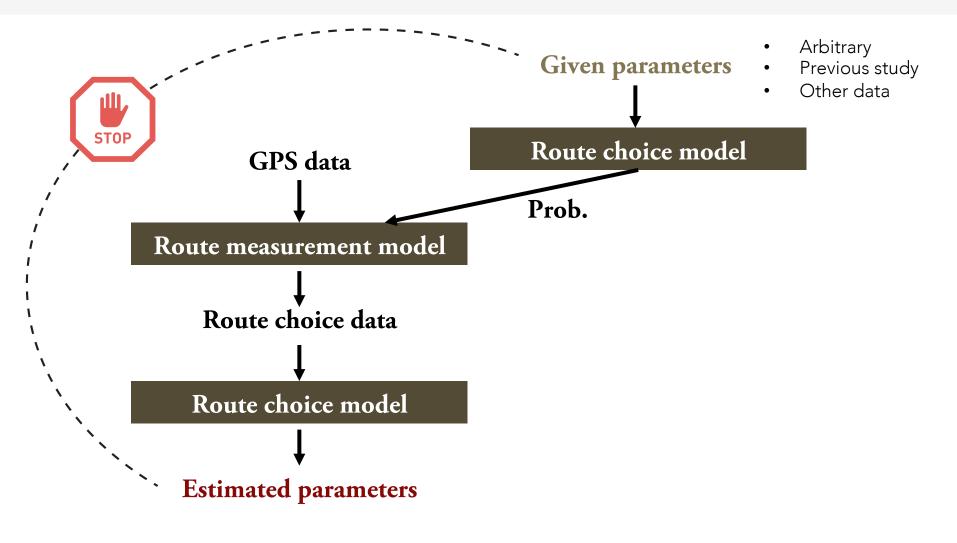
Route measurement models (2)

Assuming error variance constant on network distort measurement probabilities

PDF of GPS measurement error:



Route measurement models (3)


Bayesian approach incorporates behavioral models into measurement models

Chen et al. (2013); Danalet et al. (2014)

Route measurement models (3)

Bayesian approach has a problem regarding **parameter inconsistency**

Route measurement models

Challenges: •

- Disconnected path
 - Not suitable for route choice models
- <u>Setting of the measurement parameter</u>
 - Possible to miss the true path
 - Ignorance of spatial difference distorts path likelihood •
- Parameter inconsistency of route choice model
 - Estimated parameter includes biases regarding initial parameter •

Framework

- 1. Link-based route measurement model
 - Matching each decomposed trip data to a link
 - Estimating a measurement parameter for each link
 - Incorporating a **link-based route choice model** as prior

2. Structural estimation method

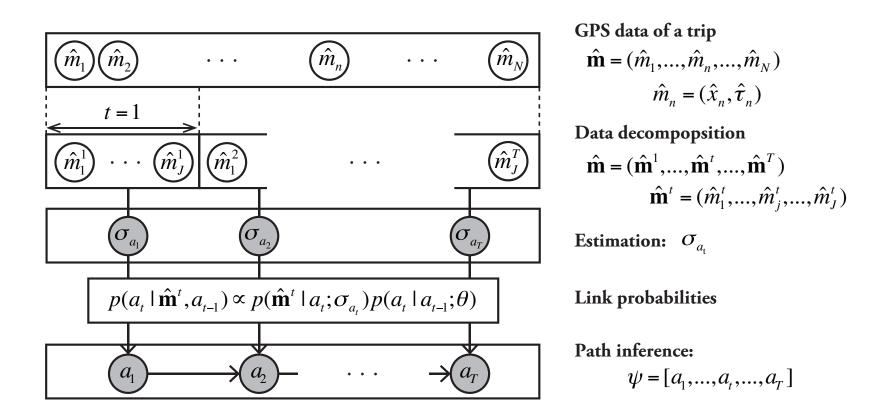
 Parameters at convergence satisfy the parameter consistency of the route choice model

Outline

1. Introduction

2. Link-based route measurement model

- 3. Structural estimation method
- 4. Numerical examples
- 5. Conclusions

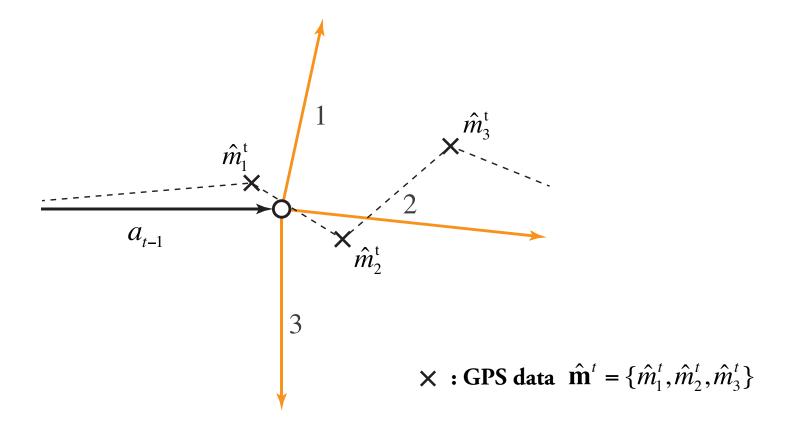

Problem & Notation

Matching row GPS data $\,\hat{\mathbf{m}}\,$ to the transportation network $\,G\,$

- **GPS data** $\hat{m} = (\hat{x}, \hat{\tau})$
 - Pair of coordinates $\hat{x} = (\hat{x}_{lat}, \hat{x}_{lon})$ with error variance σ
 - Timestamp $\hat{ au}$
 - A given trip $\hat{\mathbf{m}} = (\hat{m}_1, \dots, \hat{m}_n, \dots, \hat{m}_N)$
- Network G = (V, A)
 - Node $v \in V$: the horizontal position $x_v = \{x_{lat}, x_{lon}\}$
 - Link $a = (v_u, v_d) \in A$: the vector of spatial attributes y_a
 - Network connection $\delta(a'|a)$: 1/0

Link-based route measurement

Matching all data observed within a period to the same link


 $p(\hat{\mathbf{m}}^t | a_t)$: Measurement probability of $\hat{\mathbf{m}}^t$ given a_t ; <u>measurement equation</u> $p(a_t | a_{t-1})$: Prior probability of a_t given a_{t-1} ; <u>system equation</u>

Link probability $p(a_t | \hat{\mathbf{m}}^t, a_{t-1})$

The probability of a_t given measurements $\hat{\mathbf{m}}^t$ and state a_{t-1}

• **Candidate set**: $A(a_{t-1}) = \{a_t | \delta(a_t | a_{t-1}) = 1\}$

- Calculate link probabilities for all $a_t \in A(a_{t-1})$

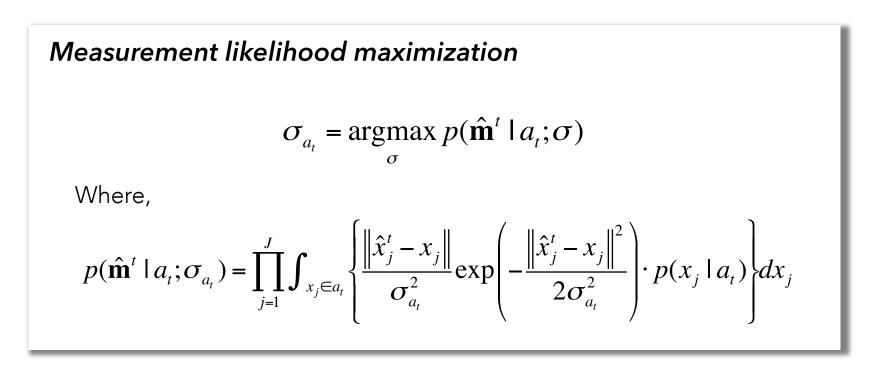
Measurement equation $p(\hat{\mathbf{m}}^t | a_t; \sigma_{a_t})$

The probability of measurements $\hat{\mathbf{m}}^t$ given a_t

• Assumption:

- Timestamp $\hat{\tau}$ has no measurement error; $p(\hat{\mathbf{m}}^t | a_t) = p(\hat{\mathbf{x}}^t | a_t)$
- Measurement probability of data is independent from each other
- Traveler moves at the constant speed on the same link

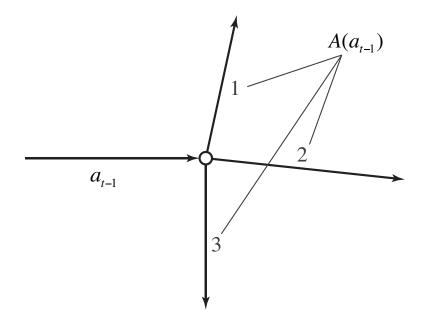
$$p(\hat{x}_{1}^{t},...,\hat{x}_{J}^{t} \mid a_{t};\sigma_{a_{t}}) = \prod_{j=1}^{J} p(\hat{x}_{j}^{t} \mid a_{t};\sigma_{a_{t}})$$
$$= \prod_{j=1}^{J} \int_{x_{j} \in a_{t}} p(\hat{x}_{j}^{t} \mid x_{j}^{t},a_{t};\sigma_{a_{t}}) p(x_{j} \mid a_{t}) dx_{j}$$


PDF of GPS measurement error: Rayleigh distribution (van Diggelen, 2007)

$$p(\hat{x}_{j}^{t} \mid x_{j}^{t}, a_{t}; \sigma_{a_{t}}) = \frac{\left\|\hat{x}_{j}^{t} - x_{j}\right\|}{\sigma_{a_{t}}^{2}} \exp\left(-\frac{\left\|\hat{x}_{j}^{t} - x_{j}\right\|^{2}}{2\sigma_{a_{t}}^{2}}\right)$$

Measurement equation Link-based route measurement mode

Estimation of measurement parameter σ_{a_t}


Link-based map matching can regard error variance as a **link peculiar variable**

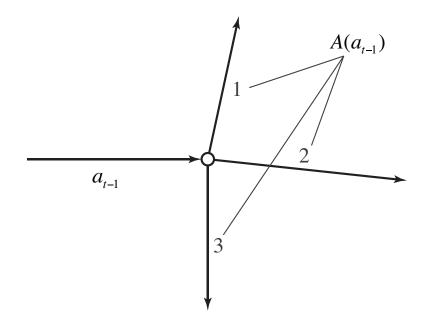
System equation $p(a_t | a_{t-1}; \theta)$

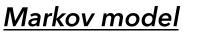
The prior probability of a_t given a state a_{t-1}

Link-based route choice model

Utility function:

$$u(a_t \mid a_{t-1}) = v(a_t \mid a_{t-1}) + \varepsilon(a_t) = \theta \mathbf{y}_{a_t \mid a_{t-1}} + \varepsilon(a_t)$$


- $v(\cdot)$: Deterministic component of utility
- $\mathcal{E}(\cdot)$: Probabilistic component of utility (i.i.d. gumbel distribution)
- $\mathbf{y}_{a_t \mid a_{t-1}}$: Vector of explanatory variables
 - heta : Vector of parameters


System equation $p(a_t | a_{t-1}; \theta)$

The prior probability of a_t given a state a_{t-1}

Link-based route choice model

Choice probability option:

$$p(a_t \mid a_{t-1}) = \frac{e^{v(a_t \mid a_{t-1})}}{\sum_{a_t \in A(a_{t-1})} e^{v(a_t \mid a_{t-1})}}$$

Recursive logit model Fosgerau et al. (2013)

$$p(a_t \mid a_{t-1}) = \frac{e^{v(a_t \mid a_{t-1}) + V^d(a_t)}}{\sum_{a_t \in A(a_{t-1})} e^{v(a_t \mid a_{t-1}) + V^d(a_t)}}$$

And others: e.g.,

Mai et al. (2015); Mai (2016); Oyama et al. (2016)

Link inference

- Link (posterior) probability:
 - The probability of a_t given measurements $\hat{\mathbf{m}}^t$ and a state a_{t-1}

$$p(a_t | \hat{\mathbf{m}}^t, a_{t-1}) \propto p(\hat{\mathbf{m}}^t | a_t; \sigma_{a_t}) p(a_t | a_{t-1}; \theta)$$

• Link inference:

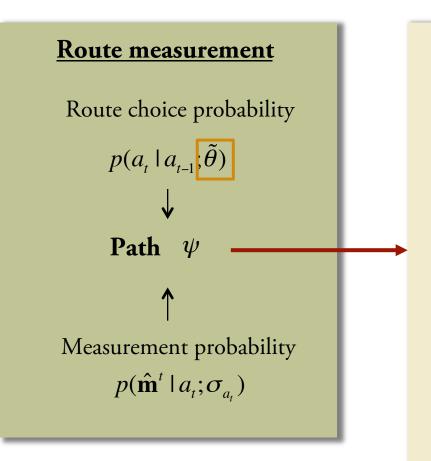
- Link likelihood maximization subject to switching condition

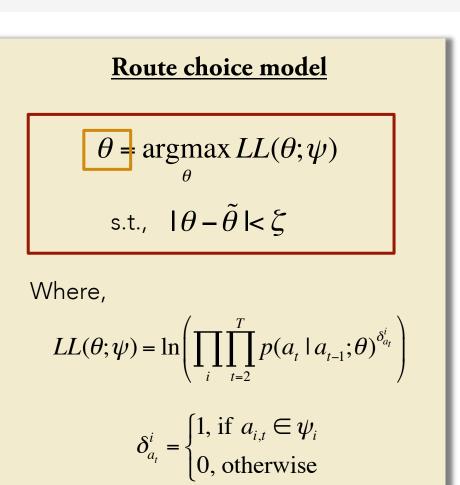
$$a_t = \underset{a_t \in A(a_{t-1})}{\operatorname{argmax}} p(a_t \mid \hat{\mathbf{m}}^t, a_{t-1})$$

s.t.,
$$\max_{a \in A(a_t)} p(\hat{\mathbf{m}}^{t+1} \mid a; \sigma_a) > \gamma$$

Outline

1. Introduction


2. Link-based map matching algorithm


3. Structural estimation method

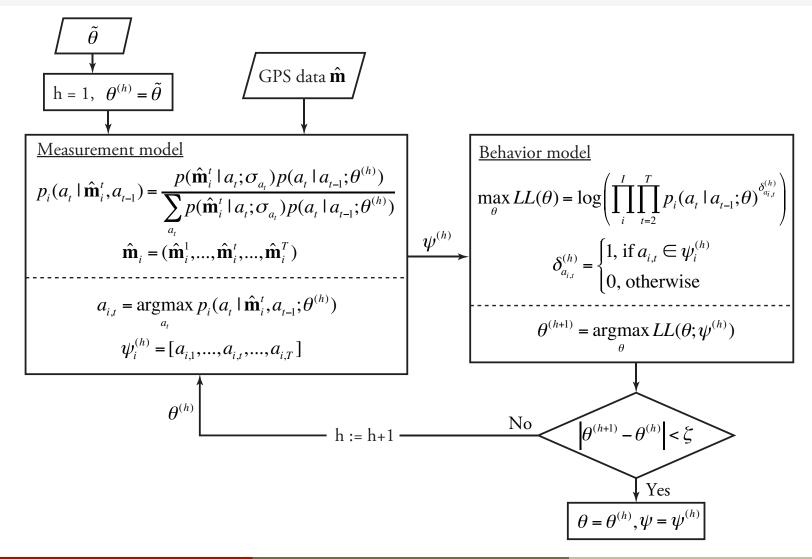
- 4. Numerical examples
- 5. Conclusions

A fixed point problem

Need to solve a fixed point problem of route measurement and estimation

Structural estimation

A method for parameter estimation of models with fixed point problem

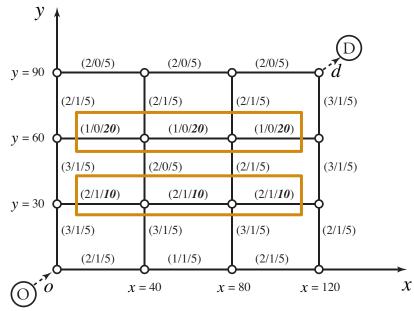

- NFXP (Nested Fixed Point) Rust (1987)
- NPL (Nested Pseudo Likelihood) Aguirregabiria and Mira (2002)
- MPEC (Mathematical Programming with Equilibrium Constraint) Su and Judd (2012)
- ...

Structural estimation for route choice model with uncertain data

- Solving a fixed problem regarding parameter of route choice model
- Inner problem: **Route measurement model**
- Outer problem: **Parameter estimation of route choice model**

Structural estimation

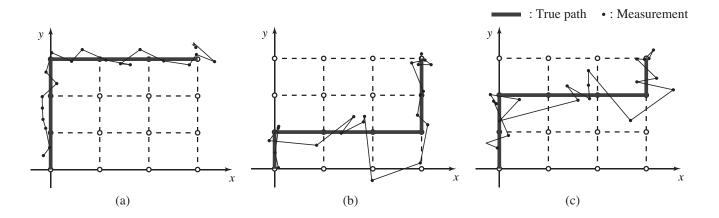
A estimation method for solving a fixed point problem of route choice parameter



Outline

- 1. Introduction
- 2. Link-based map matching algorithm
- 3. Structural estimation method
- 4. Numerical examples
- 5. Conclusions

Twins experiment Numerical examples


Twins experiments | Simulation

<u>Settings</u>

$v(a \mid k) = \theta_1 T T_a +$	$\theta_2 C C_a + \theta_3 D C_a + \theta_4 U T_{alk}$
True parameter:	$\tilde{\theta} = [-0.1, -2, -1.5, -4]$
Period interval:	$\overline{t} = 30s$
Data generation:	$\hat{\tau}_j - \hat{\tau}_{j-1} = 10s$

*(continuous cost: CC_a / discrete cost: DC_a / variance: σ_a)

Oyama, Y. (The University of Tokyo)

Twins experiment Numerical examples

Twins experiments | Measurement results

Which model improves the route measurement accuracy?

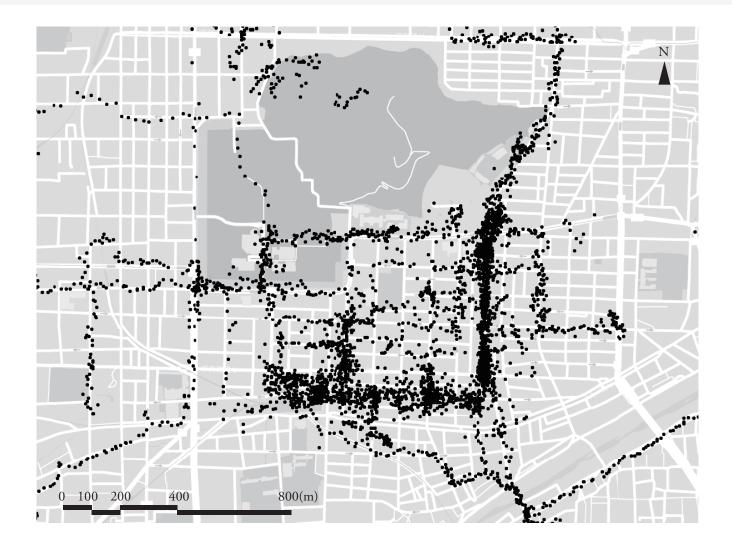
Table: Measurement accuracy and the difference of the parameter from the true value

				accuracy(%)		Ave. $ \sigma_{\rm est} - \sigma_{\rm true} $		
	Model	σ	$ ilde{ heta}$	-	S	witching	-	Switching
1	MEQ	given	-	54.571		68.857	-	-
2	MEQ	estimated	-	76.857		82.857	5.848	4.397
3	MEQ+SEQ	estimated	$\left[0,0,0,0\right]$	76.857		82.857	5.848	4.397
4	MEQ+SEQ	estimated	$\left[-1.5, -0.1, -2, -10\right]$	4.857		38.286	41.992	21.206
5	MEQ+SEQ	estimated	$\left[-0.1, -2, -1.5, -4\right]$	76.857		91.714	7.579	4.056

*MEQ: Measurement Equation

*SEQ: System Equation

Twins experiments | Estimation results


Does structural estimation method improve the parameter estimation results ?

$\begin{tabular}{ c c c c c c } \hline $\begin{tabular}{ c c c c c c c } \hline $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Input: $\theta = [0, 0, 0, 0]$ (No information)								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	One-way					Structural Estimation			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		TRUE	Estimates	abs(diff.*)	t-value	Estimates	abs(diff.)	t-value	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	θ_1	-0.1	0.002	0.102	0.101	-0.064	0.036	-2.562	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	θ_2	-2	-0.755	1.245	-4.164	-1.727	0.273	-6.882	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	θ_3	-1.5	-1.312	0.188	-4.772	-1.046	0.454	-3.519	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ heta_4$	-4	-1.892	2.108	-8.864	-3.519	0.481	-9.739	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	total error			3.643			1.244		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	sample				350			350	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L0				-373.221			-371.887	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LL				-269.872			-211.308	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ρ^2				0.266			0.421	
$\begin{tabular}{ c c c c c c c } \hline One-way & Structural Estimation \\ \hline TRUE Estimates abs(diff.) t-value Estimates abs(diff.) t-value \\ \hline $$0$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	iteration					6			
$\begin{tabular}{ c c c c c c c } \hline One-way & Structural Estimation \\ \hline TRUE Estimates abs(diff.) t-value Estimates abs(diff.) t-value \\ \hline $$0$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Input: $\tilde{\theta} =$	= [-1.5, -0.5]	(1, -2, -10] (Wrong values)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			One-way			Structural Estimation			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		TRUE	Estimates	abs(diff.)	t-value	Estimates	abs(diff.)	t-value	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	θ_1	-0.1	-0.097	0.003	-5.312	-0.064	0.036	-2.562	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	θ_2	-2	-0.419	1.581	-2.710	-1.727	0.273	-6.882	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	θ_3	-1.5	0.178	1.678	0.963	-1.046	0.454	-3.519	
$\begin{array}{c c} \text{sample} & 350 \\ \text{L0} & -373.560 \\ \text{LL} & -328.587 \\ \text{LL} & -328.587 \\ \rho^2 & 0.110 \end{array} \begin{array}{c} 350 \\ -371.887 \\ -211.308 \\ 0.421 \end{array}$	$ heta_4$	-4	-1.204	2.796	-6.774	-3.519	0.481	-9.739	
L0-373.560-371.887LL-328.587-211.308 ρ^2 0.1100.421	total error			6.058			1.244		
LL -328.587 -211.308 ρ^2 0.110 0.421	sample				350			350	
ρ^2 0.110 0.421	L0				-373.560			-371.887	
	LL				-328.587			-211.308	
iteration 8	$ ho^2$				0.110			0.421	
	iteration							8	

Input: $\theta =$	[0, 0, 0, 0] (No	information)
-------------------	------------------	--------------

Real data

Matsuyama Probe Person data in 2007, 30 pedestrians, 729 locations

Real data | Model specification

- Route choice model: (static) Markov model
- **Target:** Pedestrian trip in city center
- Utility function:

$$v(a \mid k) = \theta_1 T T_a + \theta_2 C U_a + \theta_3 D U_a + \theta_4 U T_{a \mid k}$$

- TT : Travel time (min.)
- CU: Sidewalk width (m)
- *DU*: Arcade dummy variable
- *UT*: U-turn dummy variable

Real data Numerical examples

Real data | Parameter estimation results

- <u>Travel time (θ_1) seems to be significant</u> from the result of **one-way model**, however,
- Structural estimation results show that links with arcade (θ_3) are the most likely to be passed by pedestrians; travel time (θ_1) is not significant
- Other t-values and rho-square (ρ^2) indicate that the *structural estimation* improves parameter estimation results

				/		
		One-way		Structural Estimation		
		Estimates	t-value	Estimates	t-value	
Travel time (min.)	θ_1	-0.007	-2.473	-0.001	-0.428	
Sidewalk width (m)	θ_2	0.088	1.497	0.134	1.582	
With arcade	$ heta_3$	-0.004	-0.011	2.760	4.288	
U-turn	$ heta_4$	0.774	0.532	0.469	3.344	
	sample		270		270	
	LO		-307.608		-309.066	
	LL		-302.174		-225.162	
	$ ho^2$		0.005		0.259	
	iteration				11	

Input: $\tilde{\theta} = [0, 0, 0, 0]$ (No information)

Real data Numerical examples

Real data | Estimation results of error variance

Estimated measurement error variance is dependent on each link

Outline

- 1. Introduction
- 2. Link-based map matching algorithm
- 3. Structural estimation method
- 4. Numerical examples
- 5. Conclusions

Conclusions and Future work

Conclusions

- <u>A link-based measurement model</u> with route choice model
- Estimation of measurement parameter <u>for each link</u>
- <u>Structural estimation method for solving a fixed point problem</u> regarding route choice parameters

Future work

- Comparison of computational efficiency with previous measurement models
- Alternatives and utility of pedestrian link choice
- Characteristics of the fixed point problem

Thank you for attention! Questions?

oyama@bin.t.u-tokyo.ac.jp

References

- 1. Bierlaire, M., Chen, J., Newman, J., 2013. A probabilistic map matching method for smartphone GPS data. Transportation Research Part C: Emerging Technologies 26, 78-98.
- 2. Bierlaire, M., Frejinger, E., 2008. Route choice modeling with network-free data. Transportation Research Part C: Emerging Technologies 16(2), 187-198.
- 3. Chen, J., Bierlaire, M., 2015. Probabilistic multimodal map matching with rich smartphone data. Journal of Intelligent Transportation System 19(2), 134-148.
- 4. Danalet, A., Farooq, B., Bierlaire, M., 2014. A bayesian approach to detect pedestrian destination-sequences from WiFi signatures. Transportation Research Part C: Emerging Technologies 44, 146-170.
- 5. Fuse, T., Nakanishi, W., 2012. A study on multiple human tracking by integrating pedestrian behavior model (in Japanese). Journal of JSCE Series D3: Infrastructure Planning and Management 68(2), 92-104.
- 6. Fosgerau, M., Frejinger, E. and Karlstrm A., 2013. A link-based network route choice model with unrestricted choice set. Transportation Research Part B, 56, pp.70-80.
- 7. Hunter, T., Abbeel, P., Bayen, A., 2014. The path inference filter: model-based low-latency map matching of probe vehicle data. IEEE Transactions on Intelligent Transportation Systems 15(2), 507-529.
- 8. Pyo, J.S., Shin, D.H., Sung, T.K., 2001. Development of a map matching method using the multiple hypothesis technique. IEEE Proceedings on Intelligent Transportation Systems, 23-27.
- 9. Quddus, M.A., Noland, R.B., Ochieng, W.Y., 2005. Validation of map matching algorithms using high precision positioning with GPS. The Journal of Navigation 58(2), 257-271.
- 10. Quddus, M.A., Ochieng, W.Y., Noland, R.B., 2007. Current map-matching algorithms for transport applications: Stateof-the art and future research directions. Transportation Research Part C: Emerging Technologies 15(5), 312-328.
- 11. Quddus, M.A., Ochieng, W.Y., Zhao, L., Noland, R.B., 2003. A general mao matching algorithm for transport telematics applications. GPS Solutions 7(3), 157-167.
- 12. Quddus, M.A., Washington, S., 2015. Shortest path and vehicle trajectory aided mapmatching for low frequency GPS data. Transportation Research Part C: Emerging Technologies 55, 328-339.
- 13. van Diggelen, F., 2007. GNSS accuracy: lies, damn lies, and statistics. GPS World 18(1), 26-32.
- 14. Velaga, N.R., Quddus, M.A., Bistow, A.L., 2009. Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems. Transportation Research Part C: Emerging Technologies 17, 672-683.
- 15. White, C.E., Bernstein, D., Kornhauser, A.L., 2000. Some map matching algorithms for personal navigation assistants. Transportation Research Part C: Emerging Technologies 8, 91-108.

Appendix

Previous route measurement models

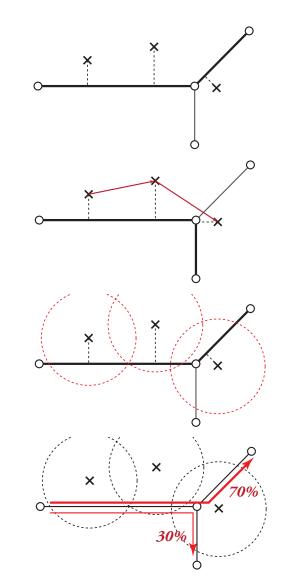
Geometric

White et al. (2000)

Topological

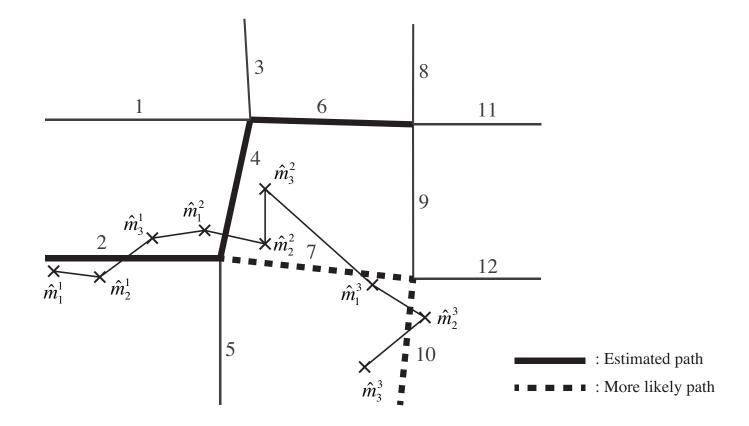
Greenfield (2002)

Probabilistic

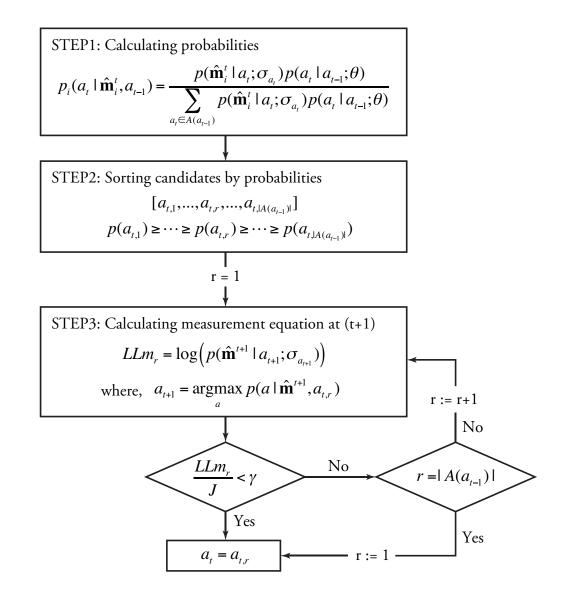

Ouchieng et al. (2004) Quddus et al. (2006)

Path-based

Pyo et al. (2006) Bielraire et al. (2013)

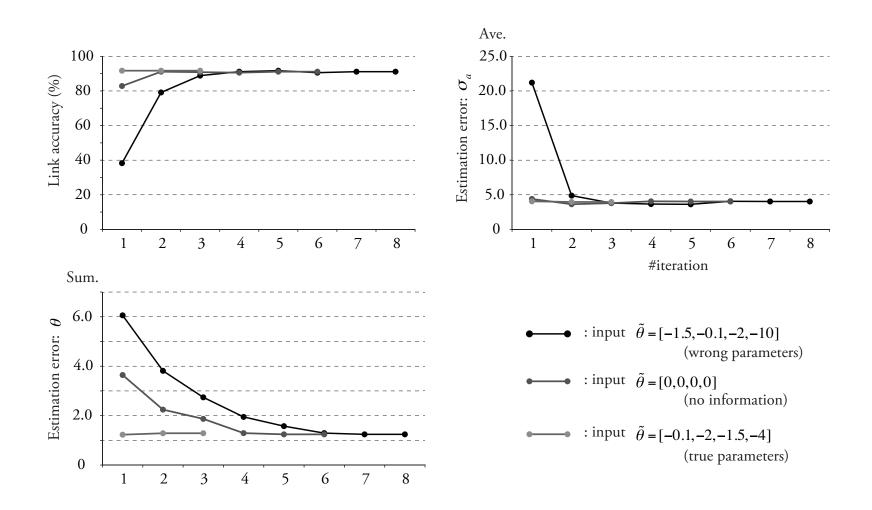

- Point-to-point Point-to-curve
- Curve-to-curve
- Adjacency
- Connectivity
- Vehicle heading

- **Error region**
- Fuzzy logic
- MHT
- Measurement equation



Link switching | errors

Difficulties regarding link connectivity because of myopic optimization



Link switching | algorithm

Real data Numerical examples

Twins experiments | iterations

